172. Neue Bi(cyclopropylidene) durch CuCl₂-katalysierte 'Carben-Dimerisierung' von 1-Bromo-1-lithiocyclopropanen¹)

von Markus Borer²) und Markus Neuenschwander*

Departement für Chemie und Biochemie der Universität Bern, Freiestrasse 3, CH-3012 Bern

(8.IX.97)

New Bi(cyclopropylidenes) by CuCl₂-Induced 'Carbene Dimerization' of 1-Bromo-1-lithiocyclopropanes

A series of so far unknown bi(cyclopropylidenes) 5 are prepared in a simple one-pot reaction by halogenolithio exchange between 1,1-dibromocyclopropanes 1a-c as well as 1e-i and BuLi at -95° , to give 1-bromo-1lithiocyclopropanes 2a-c as well as 2e-i, followed by treatment with CuCl₂ at low temperature and a simple workup at room temperature (*Table 1*). The influence of reaction parameters on yields of 5 (*Tables 2, 4, and 5*) and diastereoselectivity of the reaction $2 \rightarrow 5$ (*Table 3*) are discussed. In view of an elucidation of the reaction mechanism, first kinetic experiments of the quantitative reaction $1c \rightarrow 2c \rightarrow 5c$ are reported.

1. Einleitung. – Cyclopropyl-Carbenoide 2 [3] sind attraktive Synthesebausteine: Sie lassen sich aus 1,1-Dibromocyclopropanen 1 in THF oder Et_2O bei -100° durch Halogeno-Lithio-Austausch generieren [4], wobei meist Diastereoisomerengemische anfallen, und durch Reaktion mit Elektrophilen, z. B. durch Protonierung, Methylierung [5][6] oder Carboxylierung [7], abfangen. Bereits oberhalb von *ca.* -80° tritt α -Elimination $2 \rightarrow 3$ ein, wobei letztlich Carbene 4 entstehen (*Schema 1*). Sowohl 3 wie 4 reagieren mit Nucleophilen, gehen C,H-Insertionen ein und können sich zu Allenen umlagern [3][8].

¹) 19. Mitt. über Kupplungsreaktionen. 18. Mitt.: [1].

²) Teil der Dissertation [2].

Dieses vielseitige reaktive Verhalten der Spezies 2-4, welche beim Aufwärmen der Reaktionslösungen durchlaufen werden, führt häufig zu sehr komplexen Produktgemischen und beeinträchtigt eine einfache synthetisch-präparative Anwendung der Cyclopropyl-Carbenoide 2.

In der Regel entstehen beim Erwärmen von Lösungen monocyclischer Carbenoide 2 vor allem Allene [9]. Falls diese Umlagerung zu gespannten Verbindungen führt, können statt dessen C,H-Insertionen und gelegentlich 'Carben-Dimerisierungen' ablaufen. Dementsprechend sind ausgehend von bicyclischen 1,1-Dihalogenocyclopropanen einige 'Carben-Dimere' 5 mit mässigen Ausbeuten isoliert worden [10–14], welche wahrscheinlich über Carbene 4 entstehen. Bei der Umsetzung von monocyclischen Carbenoiden 2 sind Bi(cyclopropylidene) 5 nur selten beobachtet worden. Eine wichtige Ausnahme stellen 2-[(Alkylthio)methyl]-1,1-dibromo-cyclopropane dar, welche bei der Umsetzung mit MeLi in Et₂O zwischen – 78° und 0° nebst den erwarteten Allenen und C,H-Insertionsprodukten mit beachtlichen Ausbeuten Bi(cyclopropylidene) 5 (R = CH₂SR') ergeben [15][16].

Vor rund zehn Jahren zeigten wir, dass sich 'Hückel-Anionen' wie Cyclopentadienid mit annähernd quantitativer Ausbeute mittels $CuCl_2$ oxidativ kuppeln lassen, und wir entwickelten daraus eine effiziente Synthese des reaktiven Grundkörpers Pentafulvalen (= 5-(Cyclopenta-2,4-dien-1-yliden)cyclopenta-1,3-dien) [17]. In analoger Weise könnte die oxidative Kupplung von 1-Bromo-1-lithiocyclopropanen 2 zu 1,1'-Dibromo-1,1'-bi-(cyclopropylen) 6 führen, welche uns als synthetische Vorstufen von Bi(cyclopropylidenen) (= Cyclopropylidencyclopropane) 5 interessierten (*Schema 1*). Verbindungen des Typs 5 mit potentiellen Abgangsgruppen R kommen ihrerseits als Edukte zur Synthese des unbekannten Grundkörpers Triafulvalen (= 3-(Cycloprop-2-en-1-yliden)cyclopropen) 7 in Frage.

Erste Versuche mit 1-Bromo-1-lithio-2-(phenylthio)cyclopropan 2 (R = PhS) zeigten, dass in Gegenwart von CuCl₂ nicht die erwarteten Kupplungsprodukte 6 (R = PhS), sondern direkt die stereoisomeren Bi(cyclopropylidene) 5 (R = PhS) entstehen [18]. Wir haben diese einfache Eintopfreaktion $1 \rightarrow 2 \rightarrow 5$ kürzlich an einigen Beispielen exemplifiziert, die präparativen Aspekte diskutiert und einen spekulativen Mechanismus vorgeschlagen [19]. Dabei zeigte es sich, dass die formale 'Carben-Dimerisierung' $2 \rightarrow 5$ durch katalytische Mengen CuCl₂ ausgelöst wird, wobei die Ausbeuten an Bi(cyclopropylidenen) 5 sehr stark von den Reaktionsbedingungen abhängig sind. Ausgehend von 1,1-Dibromocyclopropanen 1 sind die ursprünglich erwarteten oxidativen Kupplungsprodukte bisher nur in einem Fall (R = Ph) bei hohen CuCl₂-Konzentrationen als Nebenprodukte beobachtet worden [20]³).

2. Präparative Ergebnisse. – Die 1,1-Dibromocyclopropane 1 reagieren mit BuLi bei -95° sehr leicht im Sinne eines Halogeno-Lithio-Austauschs $1 \rightarrow 2$ [4]. Die dabei gebildeten 1-Bromo-1-lithiocyclopropane sind bei -95° unter H₂O-Ausschluss meist während Stunden stabil (wobei die beiden Stereoisomeren 2 in Gegenwart von Spuren von

³) Deutlich höhere Anteile an oxidativen Kupplungsprodukten erhält man ausgehend von 1-Bromo-1-chlorocyclopropanen: Da der Br-Li-Austausch viel rascher ist als ein Cl-Li-Austausch, werden mit BuLi 1-Chloro-1lithiocyclopropane gebildet, bei welchen die oxidative Kupplung gegenüber der 'Carben-Dimerisierung' bereits begünstigt sein kann [20].

1 äquilibrieren können [21]) und lassen sich durch Protonierung oder Methylierung nachweisen. Bei Zugabe katalytischer Mengen $CuCl_2$ (meist 0,1 mol-equiv.) setzen sie sich bereits bei -95° zu den Zielverbindungen 5 um. Somit sind Bi(cyclopropylidene) 5 aus 1,1-Dibromocyclopropanen unter sehr schonenden Bedingungen in einer einfachen Eintopfreaktion zugänglich.

Trotz schonender Arbeitsweise zeigen GC-Untersuchungen [2] [18], dass bei der Tieftemperatur-Umsetzung von 1-Bromo-1-lithiocyclopropanen 2 mit CuCl₂ recht komplexe Produktgemische anfallen, dass sich jedoch die Ansätze meist auf hohe Ausbeuten an 'Carben-Dimeren' optimieren lassen (vgl. unten). Da die meisten Nebenprodukte deutlich unpolarer oder leichtflüchtiger sind als die Hauptprodukte 5, ist eine einfache chromatographische und destillative Anreicherung der Bi(cyclopropylidene) 5 möglich. Die 'Carben-Dimeren' 5 fallen normalerweise als Stereoisomerengemische an. Eine Trennung der Diastereoisomerengemische 5 ist schwierig, sie ist in einzelnen Fällen durch präparative GC oder fraktionierte Kristallisation gelungen.

Die präparativen Ausbeuten sind extrem stark von den Reaktionsbedingungen abhängig (vgl. unten), so dass sich in jedem Falle eine Optimierung der Reaktion $1 \rightarrow 5$ lohnt. Meist erhält man nahezu optimale Ausbeuten, wenn eine 0,3M THF-Lösung des 1,1-Dibromocyclopropans 1 bei -95° mit 0,1 mol-equiv. CuCl₂ (bzgl. 1) und 1 mol-equiv. BuLi versetzt, 1 h bei -95° gerührt, nach Abbruch mit HOAc auf Raumtemperatur erwärmt und chromatographisch aufgearbeitet wird.

Wir berichten im folgenden über Versuche zur Erweiterung der präparativen Anwendungsbreite der Reaktion $1 \rightarrow 2 \rightarrow 5$, über den Einfluss der Reaktionsparameter auf die

	$\begin{array}{c} Br \\ R^3 \\ R^2 \\ R^1 \end{array}$				$\begin{array}{c c} 1. BuLi, 2. CuCl_2 \\ \hline THF (Et_2O), -95^{\circ} \\ \hline R^4 \\ R^4 \\ \hline S \end{array}$			
	R ¹	R ²	R ³	R ⁴	Solvens ^a)	Reaktions- führung ^b)	Produkt ^e)	Ausbeute [%] ^d)
1a	Et	Н	н	Et	Et ₂ O	kin.	5a	51
1b	Н	$-(CH_2)_5 -$		Н	Et ₂ O	kin.	5b	43
lc	Н	-(CH ₂) ₃ -		Н	THF	kin.	5c	100
1 d	н	$-(CH_2)_2 -$		н	THF/Et ₂ O	kin	5d	- ^e)
1e	CH2-O-CH2	н	Н	Н	THF	kin.	5e	66
1f	BuOCH ₂	н	Н	Н	THF	kin.	5f	75
1g	PhOCH ₂	н	Н	Н	THF	kin.	5g	ca. 50 ^f)
1h	4-MeC ₆ H ₄	н	Н	Н	THF	kin.	5h	17
1i	$4-MeOC_6H_4$	Н	н	н	THF	kin.	5i	31

Tab. 1. Synthese der Bi(cyclopropylidene) 5a-i aus 1,1-Dibromocyclopropanen 1a-i: Präparative Ausbeuten⁴)

R3 R3

^a) Reaktionstemperatur -95° ; Aufarbeitung nach Abbruch der Reaktion bei -95° mit HOAc. ^b) kin. = 'Kinetische Kontrolle' (Zugabe von 0,1 mol-equiv. CuCl₂ vor dem Umsatz mit BuLi). ^c) Mit Ausnahme von **li** werden Diastereoisomerengemische erhalten. ^d) Präparative Ausbeute von optimierten Ansätzen nach Chromatographie bzw. nach Abtrennung der Kristalle (**1e**, **1i**). ^e) Das Bi(cyclopropyliden) **5d** konnte weder in THF noch in Et₂O nachgewiesen werden. ^f) Die Reaktion ist schlecht reproduzierbar.

⁴) Die Ausbeuten sind sehr stark von den Reaktionsbedingungen abhängig. Deshalb dürfte es schwierig sein, die Werte der *Tab. 1* exakt zu reproduzieren.

Bildung der Bi(cyclopropylidene) 5 sowie über Vorarbeiten zur mechanistischen Untersuchung der $CuCl_2$ -induzierten 'Carben-Dimerisierung' von Cyclopropyl-Carbenoiden 2.

Nach Tab. 1 sind eine Reihe neuer substituierter Bi(cyclopropylidene) 5 synthetisiert worden. Die unter optimierten Bedingungen (vgl. unten) erzielten Ausbeuten der 'Carben-Dimere' 5 schwanken in Abhängigkeit von den Substituenten in einem grossen Bereich. Gute Ausbeuten an 'Carben-Dimeren' 5 (Mittelwert 65%) werden in Übereinstimmung mit früheren Ergebnissen [19] ausgehend von den 2,2-Dialkyl-1,1-dibromocyclopropanen $1\mathbf{a}-\mathbf{c}$ erzielt. Im Hinblick auf spätere kinetische Untersuchungen ist die quantitative Reaktion $1\mathbf{c} \rightarrow 2\mathbf{c} \rightarrow 5\mathbf{c}$ besonders interessant. Dies um so mehr, als nur zwei diastereoisomere Bi(cyclopropylidene) 5c gebildet werden, deren Dreiring-H-Atome im ¹H-NMR-Spektrum scharfe *s* erzeugen. Während Alkoxyderivate 1 nur geringe Ausbeuten an 'Carben-Dimeren' ergeben [19] sind die Ausbeuten ausgehend von den Alkoxymethyl-Derivaten 1e und 1f mit rund 70% deutlich höher. Dagegen verlaufen die Umsetzungen von *para*-substituierten 2-Aryl-1,1-dibromocyclopropanen (vgl. 1h und 1i) recht unbefriedigend⁵).

Die Struktur der isolierten Bi(cyclopropylidene) **5** wird durch die spektroskopischen Daten bewiesen. Besonders charakteristisch sind die niedrigen Frequenzen der Signale der Dreiring-C-Atome. Bei allen Bi(cyclopropylidenen) **5a-i** absorbiert C(1) im Bereich von 113–120 ppm, bei den 2,2-Dialkylderivaten **5a-c** liegt C(2) bei 22–26 ppm und C(3) bei 14–17 ppm, während bei den 2-monosubstituierten Verbindungen **5f-i** C(2) im Intervall von 15–20 ppm und C(3) im Bereich von 7–15 ppm beobachtet wird. Dagegen ist das Aufspaltungsmuster der Dreiring-H-Atome auch von reinen Stereoisomeren **5** wegen der Fernkopplungen über die zentrale (C=C)-Bindung auffallend komplex.

Bei der Umsetzung von 1,1-Dibromospiro[2.2]pentan (1d) mit BuLi und CuCl₂ (0,1 mol-equiv.) in THF bei -95° wird nicht das erwartete Bi(cyclopropyliden) 5d gebildet, sondern man isoliert nach der Aufarbeitung in *ca.* 8% Ausbeute eine kristalline Verbindung der Summenformel C₁₀H₁₂Br₂, deren NMR-Daten überraschenderweise keine Hinweise auf Cyclopropan CH₂-Gruppen ergeben. Alle spektroskopischen Daten sprechen dafür, dass das durch Bromo-Lithio-Austausch primär gebildete Carbenoid 2d unter Abbau von Ringspannung eine Ringerweiterung 2d $\rightarrow 8$ eingeht, wobei die nachfolgende oxidative Kupplung zum Endprodukt 9 führt (*Schema 2*). Die schlechten Ausbeuten an 9 sind darauf zurückzuführen, dass zur CuCl₂-induzierten 'Carben-Dimerisierung' 2 \rightarrow 5 üblicherweise katalytische Mengen (*ca.* 0,1 mol-equiv.) verwendet werden.

Das ¹H-NMR-Spektrum des Umlagerungsprodukts **9** enthält zwei gegenseitig koppelnde *m* bei 2,70 und 2,50 ppm sowie ein leicht verbreitertes *s* bei 2,21 ppm. Bei Bestrahlung dieses *s* mit einer Zusatzfrequenz erscheint bei 2,70 und 2,50 ppm ein AA'XX'-System⁶). Im ¹³C-NMR-Spektrum absorbieren zwei quartäre Vinyl-C-Atome

⁵) Im Hinblick auf mechanistische Untersuchungen wäre die Umsetzung einer Reihe von para-substituierten 2-Aryl-1,1-dibromocyclopropanen zur Bestimmung von Substituenteneffekten sehr interessant gewesen.

⁶) Die Analyse ergibt J(A,A') = -12,32, J(X,X') = -11,00, J(A,X) = J(A',X') = 4,74 und J(A,X') = J(A',X) = 1,77 Hz. Die Grösse dieser Kopplungskonstanten ist sehr typisch für Cyclobutene.

bei 147,5 und 108,7 ppm⁷) sowie CH_2 -Gruppen bei 35,0, 30,4 und 25,4 ppm (ähnliche Intensität). Im IR-Spektrum liegt die (C=C)-Streckschwingung bei 1654 cm⁻¹, d. h. in einem für substituierte Cyclobutene typischen Bereich [23], während die MS-Hauptfragmentierung in einer Spaltung der Molekülionen 290/292/294 in zwei gleiche Hälften (145/147) besteht.

3. Einfluss der Reaktionsparameter. - 3.1. Vorbemerkungen. Die bisherigen Untersuchungen [18-20] haben gezeigt, dass der Erfolg der CuCl2-induzierten 'Carben-Dimerisierung' von 1-Bromo-1-lithiocyclopropanen $2 \rightarrow 5$ sehr stark von der Wahl der geeigneten Reaktionsbedingungen abhängig ist, und die wichtigen Parameter sind am Beispiel der Umsetzung von 1,1-Dibromo-2-phenylcyclopropan optimiert worden [18]. Als Reaktionstemperatur hat sich -95° bewährt, da bei dieser Temperatur einerseits die Bildungsgeschwindigkeit der Carbenoide 2 aus 1 ausreichend gross ist, während die Zerfallsgeschwindigkeit der Carbenoide 2 noch klein ist. Wie erwartet, nimmt die Ausbeute am 'Carben-Dimer' 5 mit zunehmender Reaktionszeit zu und erreicht nach ca. 60 min ein Maximum. Als Katalysator hat bisher CuCl₂ die grösste Anwendung gefunden, doch sind auch andere Übergangsmetallsalze katalytisch aktiv. Üblicherweise werden ca. 0,1 mol-equiv. an CuCl₂ eingesetzt. Sehr wichtig sind hohe Edukt-Konzentrationen, und hohe Bi(cyclopropyliden)-Ausbeuten werden beim Einsatz von ca. 0,3м Lösungen der 1,1-Dibromocyclopropane 1 erhalten⁸). Alle obgenannten Reaktionsparameter wurden im folgenden eingehalten, und bei Standard-Ansätzen sind 0,3M Lösungen der Edukte 1 mit 1 mol-equiv. BuLi und 0,1 mol-equiv. CuCl₂ während 1 h bei -95° umgesetzt worden.

Die vorliegenden Arbeiten [18] lehren jedoch auch, dass andere Reaktionsparameter von Fall zu Fall variieren können und für jedes Beispiel neu zu optimieren sind. So hat sich als *Lösungsmittel* meist THF bewährt, aber es sind einige Umsetzungen bekannt, bei welchen in Et₂O höhere Ausbeuten an Bi(cyclopropylidenen) **5** erreicht werden. Ebenso kann die Art der *Reaktionsführung* den präparativen Erfolg beeinflussen: Wird nämlich zunächst der Halogeno-Lithio-Austausch $1 \rightarrow 2$ vorgenommen und erst später CuCl₂ zugegeben ('*thermodynamische Kontrolle*'⁹)), so können die 1-Bromo-1-lithiocyclopropane **2** vor der Reaktion $2 \rightarrow 5$ äquilibrieren [21]. Andererseits lässt sich die 'Carben-Dimerisierung' auch so durchführen, dass das Edukt 1 zusammen mit CuCl₂ vorgelegt wird und erst jetzt allmählich BuLi zugetropft wird ('*kinetische Kontrolle*'⁹)). Dies hat zur Folge, dass das bevorzugt gebildete Carbenoid **2** sogleich mit CuCl₂ umgesetzt wird.

Wir berichten im folgenden für die Umsetzungen $1a-i \rightarrow 5a-i$ über den Einfluss der Reaktionsführung auf die Diastereoisomerenverteilung sowie die Bi(cyclopropyliden)-Ausbeuten, prüfen den Lösungsmitteleinfluss und untersuchen den Einfluss verschiedener Kupplungssalze.

⁷) Eine grobe Abschätzung [22][23] ergibt für die Vinyl-C-Atome von 9 141 bzw. 117 ppm.

⁸) Beim Umsatz von 1,1-Dibromo-2-phenylcyclopropan mit CuCl₂ in THF bei -95° steigt die Ausbeute an Bi(cyclopropyliden) 5 von 0% (0,036M Lösung) auf 69% (0,27M Lösung) [24][20]. Bei der analogen Umsetzung von 1,1-Dibromo-2-(phenylthio)cyclopropan in Et₂O steigt die Ausbeute an 5 von 0,1% (0,016M Lösung) auf ca. 30% (0,32M Lösung) [18][25].

⁹) Bei 'kinetischer Kontrolle' wird CuCl₂ (0,1 mol-equiv.) bei -95° der 0,3M THF- oder Et₂O-Lösung von 1 zugesetzt und erst dann allmählich BuLi (1 mol-equiv.) zugetropft. Bei 'thermodynamischer Kontrolle' wird 1 zunächst bei -95° mit BuLi (1 mol-equiv.) umgesetzt, sodann das gebildete 2 1 h bei -95° gerührt und erst dann CuCl₂ (0,1 mol-equiv.) zugegeben.

3.2. Einfluss der Reaktionsführung. Die bisherigen Ergebnisse [19] haben gezeigt, dass die Art der Reaktionsführung und insbesondere der Zeitpunkt der CuCl₂-Zugabe die Produktausbeute beeinflussen können. Meist erzielt man bei 'kinetischer Kontrolle'⁹) bessere Ausbeuten an Bi(cyclopropylidenen) 5 als bei 'thermodynamischer Kontrolle'⁹), doch lassen sich keine allgemein gültigen Regeln aufstellen. Die in Tab. 2 aufgeführten Beispiele ergeben für 5e, 5f, 5h und 5i bei 'kinetischer Kontrolle' deutlich bessere Ausbeuten, während bei der Synthese von 5a, 5b, 5c und 5g die Reaktionsführung keine entscheidende Rolle spielt.

	Gebildetes 'Carben-Dimer' 5 [%] ^a) thermodynamische Kontrolle ^b)	kinetische Kontrolle ^c)		
1a → 5a	20	17		
$1b \rightarrow 5b$	35	40		
$1c \rightarrow 5c$	75	72		
1d → 5d	- ^d)	- ^d)		
1e → 5e	8	39		
1f → 5f	37	66		
1g → 5g	60	60		
$1h \rightarrow 5h$	13	49		
1i → 5i	18	49		

Tab. 2. Einfluss	der Reaktionsführung	auf die Bildung	ler Bi(cyclopropylidene) 5°	') (Lösungsmittel THF)
------------------	----------------------	-----------------	-----------------------------	------------------------

^a) Prozentangaben (Summe aller Diastereoisomeren 5) gemäss GC-Integramm der Rohprodukte (Summe aller Peaks = 100 %)¹⁰). ^b) Zugabe von BuLi, Äquilibrierung, dann Zugabe von CuCl₂⁹). ^c) Zugabe von CuCl₂, dann Zugabe von BuLi⁹). ^d) Umlagerung, vgl. *Schema 2*.

Interessant ist ferner die Beobachtung, dass das Mengenverhältnis der gebildeten Diastereoisomeren 5 durch die Art der Reaktionsführung nur wenig beeinflusst wird (*Tab. 3*). Sowohl bei '*kinetischer*' wie bei '*thermodynamischer Kontrolle*'⁹) wird für jede untersuchte Umsetzung dasselbe Hauptisomer gebildet, und bis auf die Reaktion $1f \rightarrow 5f$ sind die Mengenverhältnisse praktisch identisch. Dies ist insofern erstaunlich, als je nach Reaktionführung unterschiedliche Cyclopropyl-Carbenoide 2 dominieren können, was grundsätzlich zu einem anderen Diastereoisomerenverhältnis der Bi(cyclopropylidene) 5 führen könnte.

3.3. Einfluss des Lösungsmittels. Unsere Untersuchungen zeigen, dass in der Regel in THF eine höhere Ausbeute an Bi(cyclopropylidenen) 5 erwartet werden kann als in Et_2O [19]. Die einzige Ausnahme bildet bisher die Umsetzung von 1,1-Dibromo-2-(phenyl-thio)cyclopropan, wo die 'Carben-Dimer'-Ausbeute beim Wechsel von THF auf Et_2O von 24% auf 44% gesteigert werden kann [18]. Die neuen Beispiele (*Tab. 4*) bestätigen die obige Regel, wonach die Ausbeuten an 5 in den meisten Fällen (1c, e-i) in THF (worin Carbenoide 2 besser stabilisiert werden [4]) markant höher sind als in Et_2O . Andererseits werden doch zwei Fälle (1a, b) beobachtet, in welchen die Bi(cyclopropyliden)-Ausbeuten in Et_2O höher liegen als in THF.

3.4. Einfluss des Katalysators. Zur Untersuchung des Katalysator-Einflusses auf die Bildung der Bi(cyclopropylidene) 5 wurde eine Reihe von Übergangsmetallsalzen eingesetzt, wobei allgemein 0,3M Lösungen der 1,1-Dibromocyclopropane 1a-i in THF (1c-i) bzw. Et₂O (1a,b) unter 'kinetischer Kontrolle'⁹) bei -95° mit Kupplungssalz und BuLi

	Reaktionsführung ⁹) thermod.	Diastereoisomerenverhältnis ^a) A/B/C/D von 5						
		Ā		B		C		D
1a → 5a		4,9	:	1	-			
	kin.	5,0	:	1				
1b → 5b	thermod.	2,3	:	1				
	kin.	2,8	:	1				
$1c \rightarrow 5c$	thermod.	1	:	1,7				
	kin.	1	:	1,6				
1e → 5e	thermod.	1	:	2,2				
	kin.	1	:	2,6				
1f → 5f	thermod.	7,6	:	13,2	:	1		
	kin.	4,1		9,7	:	1		
$1g \rightarrow 5g^{b}$)	thermod.	1	:	1,5	:	1,5		
8 8/	kin.	1	:	1,6	:	1,7		
1h → 5h	thermod.	1	:	2,1	:	1,5	:	1,1
	kin.	1	:	2,4	:	1,6	:	1,4

Tab. 3. Einfluss der Reaktionsführung auf die Diastereoisomerenverhältnisse der 'Carben-Dimeren' 5

^a) Auflistung der Diastereoisomeren A, B, C, D und von 5 in der Reihe zunehmender t_{R} im GC. Strukturnachweis mittels GC/MS. ^b) Es wurden nur 3 von 4 möglichen Diastereoisomeren detektiert.

	Gebildetes 'Carben-Dir	Gebildetes 'Carben-Dimer' 5 [%] ^b)			
	THF	Et ₂ O			
1a → 5a	17	60			
1b → 5b	40	51			
$1c \rightarrow 5c$	72	47			
1e → 5e	39	_			
1f → 5f	66	30			
$1g \rightarrow 5g$	60	6			
1h → 5h	49	15			
1i → 5i	49	2			

Tab. 4. Einfluss des Lösungsmittels auf die Bildung der Bi(cyclopropylidene) 5^a)

^a) 'Kinetische Reaktionsführung'⁹). ^b) Prozentangaben (Summe aller Diastereoisomeren 5) gemäss GC-Integramm des Rohprodukts (Summe aller Peaks = 100 %)¹⁰).

umgesetzt wurden. Die Resultate (*Tab. 5*) zeigen klar auf, dass verschiedene Übergangsmetallsalze katalytisch aktiv sind, doch werden im allgemeinen mit $CuCl_2$ die besten Ausbeuten an 'Carben-Dimeren' **5** erzielt. CuCl besitzt in vielen Fällen eine ähnliche katalytische Aktivität wie $CuCl_2$, versagt aber bei der Umsetzung von **1h** und **1i**, während die Ausbeuten an **5** mit FeCl₃ fast durchwegs markant niedriger ausfallen. Andererseits besitzt CuBr₂ annähernd dieselbe Wirkung wie CuCl₂, was darauf hindeutet, dass das Gegenion keine bedeutende Rolle spielt, solange die Löslichkeit des Katalysators bei -95° genügend gross bleibt. Lösungsversuche mit CuCl₂, CuBr₂ und CuF₂ lehren, dass die beiden erstgenannten Salze in THF bei -95° eine recht beachtliche Löslichkeit von rund 50 mmol/l aufweisen, während CuF₂ nur sehr wenig löslich ist (*ca.* 2,2 mmol/l). Demnach sind die schlechten Resultate mit CuF₂ sehr wahrscheinlich auf die geringe Löslichkeit in THF zurückzuführen. Dies stützen auch die Umsetzungen $1a \rightarrow 5a$ und $1b \rightarrow 5b$ in Et₂O, worin CuF₂ bei -95° besser löslich ist als in THF und dementsprechend mit CuF₂ ähnliche Ausbeuten an 5a und 5b erzielt werden wie mit CuCl₂ und CuBr₂. Damit ergeben sich Hinweise darauf, dass nur gelöste Übergangsmetallsalze katalytisch aktiv sind (homogene Katalyse).

	Lsgm.	Carben-Dimer-Ausbeute 5 [%] ^a)						
		CuCl ₂	CuCl	FeCl ₃	CuBr ₂	CuF ₂	Leerversuch ^b)	
1a → 5a	Et ₂ O	73	72	15	64	75	- ^c)	
1b → 5b	Et,O	49	50	16	43	53	- °)	
1c → 5c	THF	100 ^d)	92	75	100 ^d)	6		
1e → 5e	THF	71	53	42	60	_	_	
1f → 5f	THF	77	38	73	55	4	_	
1h → 5h	THF	40	7	22	58	_	_	
1i → 5i	THF	49	-	7	57	-	-	

Tab. 5. Einfluss des Katalysators auf die Bildung der Bi(cyclpropylidene) 5

^a) Prozentangaben des Rohprodukts (Summe aller Diastereoisomeren 5, gemäss GC-Integramm, Summe aller Peaks = 100%)¹⁰). ^b) 0,3M Lösungen der 1,1-Dibromocyclopropane **1a**-i in THF werden bei -95° tropfenweise mit 1 mol-equiv. BuLi versetzt und 60 min bei -95° gerührt. Durch Zugabe von 1,1 mol-equiv. HOAc wird die Reaktion abgebrochen, auf Raumtemperatur erwärmt und eingedampft. Die GC-Untersuchung der Rohprodukte (Summe der GC-Peaks = 100%) ergibt durchwegs hohe Ausbeuten der durch Protonierung von 2 gebildeten 1-Bromocyclopropane: aus **1a** 91%, aus **1b** 93%, aus **1c** 87%, aus **1e** 60%, aus **1f** 71%, aus **1g** 57%, aus **1h** 85% und aus **1i** 79% Protonierungsprodukt. ^c) Lösungsmittel THF. ^d) Präp. Ausbeutebestimmung nach FC.

Angesichts der Tatsache, dass Cyclopropyl-Carbenoide 2 bei Temperaturen oberhalb von -80° instabil werden und unter α -Elimination von LiBr Carbene bilden können, welche sich u.a. zu Bi(cyclopropylidenen) 5 rekombinieren können, wurden alle im Rahmen dieser Arbeit durchgeführten Reaktionsansätze (*Tab. 1-5*) bei -95° durch Zugabe von HOAc abgebrochen. Die Leerversuche ohne Katalysator (*Tab. 5*, letzte Spalte) zeigen eindrücklich, dass dabei in keinem Falle Bi(cyclopropylidene) 5 nachgewiesen werden können, sondern dass mit hohen Ausbeuten 1-Bromocyclopropane anfallen. Damit wird klar, dass alle untersuchten Carbenoide 2 bei -95° in THF (2c-i) bzw. Et₂O (2a, b) mindestens während 60 min stabil sind und zur Bildung der Bi(cyclopropylidene) 5 bei -95° ein Übergangsmetall-Katalysator unerlässlich ist.

4. Vorarbeiten zu kinetischen Untersuchungen. – Mit der Beobachtung einer quantitativ verlaufenden CuCl_2 -induzierten 'Carben-Dimerisierung' $2\mathbf{c} \rightarrow 5\mathbf{c}$ (Schema 3) eröffnet sich die Möglichkeit einer Untersuchung des Reaktionsmechanismus' dieser sowohl präparativ wie mechanistisch attraktiven Reaktion. Obwohl die mit BuLi/CuCl₂ zu 100% verlaufende Umsetzung $1\mathbf{c} \rightarrow 2\mathbf{c} \rightarrow 5\mathbf{c}$ anzeigt, dass beide Reaktionsschritte vollständig ablaufen, sind die messtechnischen Probleme zur direkten Verfolgung des Reak-

¹⁰) Die Rohprodukte werden im GC analysiert (Details vgl. Exper. Teil), wobei die Integralsumme über alle Peaks als 100% gewertet wird. Da die Empfindlichkeit des GC-Detektors nicht für alle Komponenten gleich ist, sind die erhaltenen Prozentwerte als Richtwerte zu betrachten, die nicht mit den präparativen Ausbeuten (Tab. 1) übereinstimmen müssen.

tionsverlaufs $2c \rightarrow 5c$ sehr gross. Beispielsweise scheint die direkte ¹H-NMR-spektroskopische Verfolgung der Reaktion $2c \rightarrow 5c$ bei -95° in (D₈)THF sehr attraktiv zu sein, doch haben bereits *Seebach* und Mitarbeiter [26] auf die fast unüberwindlichen Schwierigkeiten bei der Tieftemperatur-Vermessung unmarkierter Organolithium-Verbindungen hingewiesen ¹¹).

Wir versuchen zunächst, die beim Halogeno-Lithio-Austausch $1 \rightarrow 2$ mittels BuLi auftretenden Probleme anzugehen¹²). Tatsächlich lässt sich die Umsetzung $1c \rightarrow 2c$ in THF auch mit Li-Sand durchführen, doch verläuft die heterogene Reaktion bei -95° recht langsam, indem 1c erst nach 2 h vollständig umgesetzt worden ist. Zudem verläuft die Reaktion mit Li nicht völlig ohne Nebenprodukte; denn bei der anschliessenden Umsetzung von 2c mit CuCl₂ werden laut GC nur 74% 'Carben-Dimer' 5c nachgewiesen. Damit entfällt eine einfache NMR-spektroskopische Verfolgung des kinetischen Verlaufs der Umsetzung $2c \rightarrow 5c$.

Als klassische Alternative zur kinetischen Verfolgung des Reaktionsverlaufs der Umsetzung $2c \rightarrow 5c$ bietet sich eine periodische Probeentnahme nach dem Start (durch Zugabe von CuCl₂ oder CuBr₂)¹³), und ein Reaktionsabbruch durch Protonierung $2c \rightarrow 10c$ an¹⁴). Nach dem Reaktionsabbruch kann der Gehalt an 5c und 10c anhand von Eichgeraden durch quantitative GC bestimmt werden. Allerdings sind die experimentellen Probleme auch in diesem Falle erheblich; denn sowohl der Transfer der Probelösung als auch der Reaktionsabbruch haben bei -95° zu erfolgen, da Cyclopropyl-Carbenoide 2 beim Erwärmen zahlreiche Nebenreaktionen eingehen können (vgl. *Einleitung*). Unsere Versuche zeigen, dass die im *Exper. Teil* beschriebene Apparatur zur Verfolgung des Reaktionsverlaufs der CuX₂-induzierten 'Carben-Dimerisierung' $2c \rightarrow 5c$ geeignet ist.

Die in Fig. 1 wiedergegebenen Messreihen zeigen, dass das Verfahren grundsätzlich zur kinetischen Verfolgung der Umsetzung $2c \rightarrow 5c$ geeignet ist¹⁵). Damit bietet sich

¹¹) Hauptprobleme sind die Quadrupolverbreiterung durch das Li-Atom, die hohe Viskosität der Lösungen, das Vorliegen mehrerer Spezies nebeneinander, Aggregatbildung, Austauschphänomene sowie Störsignale der verwendeten Lösungsmittelgemische [26]. Deshalb untersuchten Seebach und Mitarbeiter ¹³C,⁶Li-markierte Organolithium-Verbindungen [26][27].

 ¹²) Käufliches BuLi ist in Hexan gelöst (wodurch ein ¹H-NMR-aktives Lösungsmittel eingeschleppt wird), die BuLi-Lösungen sind oft nicht sehr rein und beim Halogeno-Lithio-Austausch entsteht neben 2 Butylbromid.
¹³) Sowohl mit CuCl, wie mit CuBr₂ verläuft die Reaktion 2c → 5c quantitativ (vgl. *Tab. 5*).

 ¹⁴) Vorversuche zeigen, dass auch die Protonierung von 2c mit HOAc annähernd quantitativ verläuft.

¹⁵) Für die saubere Bestimmung der Reaktionsgeschwindigkeiten und Reaktionsordnungen der 'Carben-Dimerisierung' 2 → 5 sind allerdings (angesichts des grossen Einflusses der Reaktionsparameter) wesentlich mehr Datenpunkte erforderlich, was wiederum notwendig macht, dass kleinere Volumina der Reaktionslösung in kleineren Zeitabständen entnommen und transferiert werden können.

erstmals die Möglichkeit, den Mechanismus dieser überraschenden 'Carben-Dimerisierung' $2 \rightarrow 5$ abzuklären. Die bisherigen Ergebnisse weisen bereits darauf hin, dass die Reaktionsgeschwindigkeiten sehr stark von den Reaktionsparametern und insbesondere der Edukt-Konzentration⁸) sowie der Katalysator-Konzentration (vgl. *Fig. 1*) abhängig sind¹⁵).

Fig. 1. Zeitlicher Verlauf der Umsetzung $2c \rightarrow 5c$

Die Autoren danken dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung (Projekt Nr. 20-43112.95) für die Unterstützung der Arbeit, Herrn A. Saxer für die Hilfe bei chromatographischen Trennproblemen und für die Aufnahme zahlreicher Gaschromatogramme sowie den Herren Dr. P. Bönzli und R. Huwyler für die NMR-Analyse von 9.

Experimenteller Teil

Allgemeines. Alle Reaktionen wurden in abs. Solventien und mit abs. Reagenzien in ausgeheizten Reaktionsgefässen mit Inertgas-Überleitung, Septum und Magnetrührer (und evtl. Tieftemp.-Thermometer) unter N₂ oder Ar durchgeführt. Kältemischungen: Trockeneis/i-PrOH (-78° ; variable Temp.: Kontrolle mit Innenthermometer); mit fl. N₂ teilweise ausgefrorenes Toluol (-95°). Ausführlichere Angaben sowie detaillierte spektroskopische Daten und Abb. der Spektren, vgl. [2]. Qual. GC: *Hewlett-Packard 5890* mit Integrator *HP 3390*; 10-m-Kapillarsäule, Innendurchmesser 0,2 mm, stationäre Phase *HP-5 Ultra*; Anfangstemp. 40°, Endtemp. 250°, Steigungsrate 3°/min; FID-Detektor, Trägergas He, Splitverhältnis 1:20; Lsgm. für Probengemisch CH₂Cl₂, Konzentration 2 µl 5/ml Lsg., Einspritzmenge *ca.* 1 µl; t_R in min. Säulenchromatographie (FC): wenn nichts anderes angegeben, Chromatographiesäule Ø 2 cm, Höhe 25–30 cm, 'flash'-Kieselgel von *J. T. Baker 70241*, 30–60 µm, Laufmittel Hexan. IR: *Perkin-Elmer FT-IR 1600*. NMR: *Bruker AC-300*; δ in ppm, *J* in Hz. GC/MS: *VG Autospec*, 30-m-Kapillarsäule, stationäre Phase *DB-5*, Heizrate 5°/min; von jedem relevanten GC-Peak wurde ein MS aufgenommen (Quellentemp. 230°, Ionisationsenergie 70 eV). MS: Varian-Mat CH-7A und VG Autospec (GC/MS und 'peak matching'). TEBA = Benzyltriethylammonium-chlorid.

1. 1,1-Dibromocyclopropane 1. 1.1. Allgemeine Arbeitsvorschrift 1 (AAV1). Methode nach Doering [28]. Das Gemisch des Olefins $\mathbb{R}^2\mathbb{R}^3\mathbb{C} = \mathbb{CH}^1\mathbb{R}^4$ und 1 mol-equiv. t-BuOK in Cyclohexan wird bei -10 bis -20° unter \mathbb{N}_2 innert 20 min tropfenweise mit 1 mol-equiv. CHBr₃ versetzt. Man rührt weitere 2 h bei -10 bis -20° und über Nacht bei RT. Das Gemisch wird sodann bei RT. mit *ca*. 30 ml H₂O und 3 ml 1n HCl versetzt und mit Et₂O (3 × 50 ml) extrahiert. Die vereinigte org. Phase wird getrocknet (MgSO₄) und bei *ca*. 50°/600-200 Torr eingedampft und das Rohprodukt durch Umkristallisation, Destillation oder Chromatographie weiter gereinigt. Nach AAV1 werden 1a-f, h, i hergestellt.

1.2. 1,1-Dibromo-2,2-diethylcyclopropan (1a)¹⁶). Mit 5,0 ml (41 mmol) 2-Ethylbut-1-en, 4,6 g (41 mmol) t-BuOK, 50 ml Cyclohexan und 3,67 ml (41 mmol) CHBr₃. Zur Abtrennung von CHBr₃ wird das Rohprodukt 30 min bei ca. $35^{\circ}/10^{-1}$ Torr eingedampft und sodann bei ca. 0,1 Torr über eine Vigreux-Kolonne (Kopftemp. ca. 25°) mikrodestilliert: 5,46 g (53 %) 1a¹⁷). Farbloses Öl.

1.3. 1,1-Dibromospiro[2.5]octan (1b)¹⁶). Mit 5,0 ml (41,6 mmol) Methylidencyclohexan, 4,67 g (41,6 mmol) t-BuOK, 50 ml Cyclohexan und 3,74 ml (41,6 mmol) CHBr₃. Das Rohprodukt wird über eine Vigreux-Kolonne bei ca. 40°/10⁻¹ Torr mikrodestilliert: 7,02 g (64%) 1b¹⁷). Farbloses Öl.

1.4. 1,1-Dibromospiro[2.3]hexan (1c)¹⁶). Mit 5,0 ml (54 mmol) Methylidencyclobutan, 6,06 g (54 mmol) t-BuOK, 60 ml Cyclohexan¹⁸) und 4,84 ml (54 mmol) CHBr₃. Zur Abtrennung von CHBr₃ wird das Rohprodukt 60 min bei ca. $35^{\circ}/10^{-1}$ Torr eingedampft und sodann bei ca. $30^{\circ}/10^{-1}$ Torr über eine Vigreux-Kolonne mikrodestilliert: 7,78 g (60%) 1c¹⁷). Farbloses Öl.

1.5. 1,1-Dibromospiro[2.2]pentan (1d)¹⁶). Mit 5,0 ml (64,7 mmol) Methylidencyclopropan, 7,26 g (64,7 mmol) t-BuOK, 60 ml Cyclohexan¹⁸) und 5,8 ml (64,7 mmol) CHBr₃. Zur Abtrennung von CHBr₃ wird das Rohprodukt sehr langsam und vorsichtig bei $40-50^{\circ}/1$ Torr über eine Vigreux-Kolonne mikrodestilliert: 9,94 g (67%) 1d¹⁷). Farbloses Öl.

1.6. 6,6-Dibromo-3-oxabicyclo[3.1.0]hexan (1e)¹⁶). Mit 5,0 ml (67,8 mmol) 2,5-Dihydrofuran, 7,60 g (67,8 mmol) *t*-BuOK, 30 ml Cyclohexan und 6,1 ml (67,8 mmol) CHBr₃. Das Rohprodukt wird über eine Vigreux-Kolonne bei ca. 42°/10⁻¹ Torr mikrodestilliert: 2,79 g (18%) $1e^{17}$). Farbloses Öl, das sich innert Minuten blassgelb färbt.

1.7. 1,1-Dibromo-2-(butoxymethyl)cyclopropan ($1f_1^{16}$). Mit 5,0 ml (34,3 mmol) Allyl-butyl-ether, 3,85 g (34,3 mmol) t-BuOK, 50 ml Cyclohexan und 3,0 ml (34,3 mmol) CHBr₃. Das Produkt wird bei *ca*. 60°/10⁻¹ Torr über eine *Vigreux*-Kolonne mikrodestilliert: 2,55 g (26%) $1f_1^{17}$). Farbloses Öl.

1.8. 1,1-Dibromo-2-(4-methylphenyl)cyclopropan (1h)¹⁶). Mit 5,0 ml (37,8 mmol) 4-Methylstyrol, 4,25 g (37,8 mmol) t-BuOK, 30 ml Cyclohexan und 3,4 ml (37,8 mmol) CHBr₃. Das Rohprodukt wird bei ca. $89^{\circ}/10^{-1}$ Torr über eine Vigreux-Kolonne mikrodestilliert: 4,60 g (42%) 1h¹⁷). Farbloses Öl.

1.9. I_1 -Dibromo-2-(4-methoxyphenyl)cyclopropan (1i)¹⁶). Mit 5,0 ml (37,0 mmol) 4-Methoxystyrol, 4,15 g (37,0 mmol) *i*-BuOK, 30 ml Cyclohexan und 3,32 ml (37,0 mmol) CHBr₃. Das Rohprodukt wird bei *ca.* 96°/10⁻¹ Torr über eine *Vigreux*-Kolonne mikrodestilliert: 5,21 g (47%) 1i¹⁷). Blassgelbes Öl.

1.10. 1,1-Dibromo-2-(phenoxymethyl)cyclopropan (1g). Methode nach Makosza [29]¹⁶). Ein Gemisch von 45 ml 50% NaOH-Lsg., 45 ml CHBr₃, 0,38 g (1,7 mmol) TEBA sowie 5,0 ml (36,5 mmol) Allyl-phenyl-ether wird intensiv gerührt. Nach 30–60 min springt die Reaktion an (\rightarrow dunkelbraun und Sieden von CHBr₃). Nachdem sich das Gemisch auf RT. abgekühlt hat, gibt man ca. 20 ml H₂O zu und rührt weitere 40 h bei RT. Das dunkle hochviskose Gemisch wird mit ca. 30 ml H₂O versetzt und kurz und intensiv gerührt. Der Brei wird auf ein P2-Filter gegeben, welches ca. 1 cm hoch mit Celite gefüllt ist. Man setzt 4mal je ca. 100 ml Pentan zu, vermischt durch Rühren mit einem Glasstab und saugt die Pentanlsg. mittels Vakuum in eine Saugflasche. Die vereinigte org. Phase wird getrocknet (MgSO₄) und eingedampft und restliches CHBr₃ bei ca. 50°/10⁻² Torr abgedampft. Das Rohprodukt wird mittels FC (Kieselgel, Ø 5 cm, Einfüllhöhe 10 cm, Hexan) gereinigt: 3,25 g (31%) 1g. Blassgelbe Kristalle. Schmp. ca. 30°¹⁷).

2. Bi(cyclopropylidene) 5. 2.1. AAV2: 'Kinetische Kontrolle'⁹). Eine Spatelspitze (ca. 0,1 mol-equiv. bzgl. 1) Katalysator (meist CuCl₂)¹⁹) wird im Zweihalskolben im N₂-Strom mit dem Bunsenbrenner gut ausgeheizt und

¹⁶) Nicht optimierte Vorschrift.

¹⁷) Detaillierte spektroskopische Daten und Abbildungen der Spektren, vgl. [2].

¹⁸) Zunächst wird Cyclohexan auf -10 bis -20° gekühlt, bevor Methylidencyclobutan, *t*-BuOK und CHBr₃ in dieser Reihenfolge zugegeben werden.

¹⁹) Die Reaktion $2 \rightarrow 5$ verläuft mit CuCl₂ und CuBr₂ mit ähnlich guten Ausbeuten, und die Umsetzung $2c \rightarrow 5c$ ist in beiden Fällen quantitativ (vgl. *Tab. 5*).

dann unter N₂ auf RT. abgekühlt. Man gibt bei RT. das Lsgm. (THF oder Et₂O) sowie das 1,1-Dibromocyclopropan 1 zu, rührt 5 min intensiv und kühlt unter Rühren auf -95° ab. Durch ein Septum werden mittels Spritze tropfenweise 1,05 mol-equiv. BuLi (bzgl. 1) zugetropft. Man rührt 1 h bei -95° , tropft zum Reaktionsabbruch innert 4 min bei -95° 2 mol-equiv. (bzgl. 1) 5M HOAc in THF zu, rührt weitere 15 min bei -95° und erwärmt auf RT. Das Gemisch wird mit *ca.* 80 ml Et₂O und 30 ml H₂O (enthaltend 3 ml ges. Na₂CO₃-Lsg.) versetzt und die org. Phase noch mit 2 × 30 ml H₂O gewaschen, getrocknet (MgSO₄) und bei *ca.* 50°/200 Torr eingedampft. Der Rückstand wird im GC untersucht. Die Rohprodukte **5a**-c, **f**-h und **9** werden mittels FC (Kieselgel, \emptyset 2 cm, Höhe 25-30 cm, Hexan gereinigt).

2.2. 2,2',2'-Tetraethyl-1,1'-bi(cyclopropyliden) (5a). Mit 1,0 g (3,91 mmol) 1a, 1 Spatelspitze CuCl₂ (ca. 0,1 mol-equiv. bzgl. 1a), 14 ml abs. Et₂O und 2,56 ml (4,1 mmol) 1,6M BuLi in Hexan. FC ergibt zwei Fraktionen. Fr. 1 (klares farbloses Öl, 122,3 mg; R_f (Hexan) 0,67) enthält die beiden Diastereoisomeren 5a im Verhältnis 7,4: 1,0 (GC: t_g 12,7 bzw. 14,7; Reinheit 97,5%, Ausbeute 31,7% ²⁰)). In Fr. 2 (112,8 mg; R_f (Hexan) 0,51) sind die Diastereoisomeren 5a nur angereichert (GC: Reinheit 63,7%, Ausbeute 19,3%). Gesamtausbeute 52% ²⁰). IR ²¹) (Film): 3030m, 2962s, 2991s, 2874s, 2854s, 1458s, 1374m-s, 1102m, 1000m-s, 965m, 952m, 880m, 790m. ¹H-NMR (300 MHz, CDCl₃): 1,57-1,38 (m, 8 H); 0,92 (s, 4 H); 0,88 (t, J = 7,3, 12 H). ¹³C-NMR (75 MHz, CDCl₃): Hauptisomer: 119,2 (s); 27,7 (t); 25,9 (s); 14,9 (t); 10,8 (q); Nebenisomer: 119,6 (s); 27,7 (t); 26,5 (s), 14,1 (t); 10,5 (q). MS ²¹)²²): 177 (11, [M - 15]⁺), 163 (78), 149 (10), 135 (30), 121 (80), 107 (91), 105 (27), 93 (99), 91 (53), 79 (53), 77 (35), 69 (20), 67 (15), 55 (30), 43 (18), 41 (27). HR-MS: 163, 14847 ([M - 15]⁺, C₁₂H₁₉^{+*}; ber. 163, 14867)¹⁷).

2.3. 1, t'-Bi(spiro[2.5]octyliden) (5b). Mit 2,0 g (7,46 mmol) 1b, 1 Spatelspitze CuCl₂ (ca. 0,1 mol-equiv. bzgl 1b), 26 ml abs. Et₂O und 4,9 ml (7,83 mmol) 1,6M BuLi in Hexan. Das Rohprodukt wird bei ca. 40°/0,1 Torr destilliert und mittels FC gereinigt. Die Hauptfraktion (klares, farbloses Öl, 376,3 mg; Schmp. ca. 30°, R_r (Hexan) 0,53) enthält laut GC die beiden Diastereoisomeren 5b im Verhältnis 1,4:1. GC: t_R 26,3 bzw. 27,6. Gesamtausbeute 43%²⁰). IR²¹) (Film): 3026m-s, 2924s, 2850s, 1443s, 1374m, 1321m-s, 1271m, 1250m, 1212m, 1120m, 1027m, 1013m, 995m, 954s, 922m-s, 899m-s, 858m, 842m-s. ¹H-NMR (300 MHz, CDCl₃): 1,60-1,33 (m, 20 H); 0,97 (s, 4 H). ¹³C-NMR (75 MHz, CDCl₃): Hauptisomer: 119,5 (s); 35,0 (t); 26,4 (t); 26,3 (t); 23,4 (s); 16,6 (t); Nebenisomer: 120,2 (s); 35,3 (t); 26,4 (t); 26,2 (t); 24,1 (s); 16,0 (t). MS²¹): 216 (5, M^+), 201 (25), 187 (16), 174 (19), 173 (43), 161 (12), 160 (14), 159 (34), 147 (28), 145 (43), 134 (36), 133 (53), 131 (32), 119 (51), 117 (23), 106 (25), 105 (66), 93 (36), 92 (28), 91 (99), 81 (34), 79 (43), 67 (34). HR-MS: 216, 18784 (M^{++} , $C_{16}H_{24}^{++}$; ber. 216, 18780)¹⁷.

2.4. 1, *t'*-Bi(spiro[2.3]hexyliden) (5c). Mit 1,5 g (6,3 mmol) 1c, 1 Spatelspitze CuCl₂ (ca. 0,1 mol-equiv. bzgl. 1c), 22 ml abs. THF und 4,1 ml (6,62 mmol) 1,6M BuLi in Hexan. FC ergibt als Hauptfraktion (klares, farbloses Öl, 529 mg; R_t (Hexan) 0,57) die beiden Diastereoisomeren 5c im Verhältnis 1,0:1,6. GC: 12,4 t_R bzw. 12,8; Reinheit 92,5%. GC-Ausbeute 100%²⁰). IR²¹) (Film): 3022m-s, 2957s, 2847s, 1430m-s, 1111m-s, 1049m, 1011m, 995m, 931m. ¹H-NMR (300 MHz, CDCl₃): Hauptisomer: 2,30 (m, 4 H); 2,14 (m, 8 H); 1,19 (s, 4 H). ¹³C-NMR (75 MHz, CDCl₃): Hauptisomer: 118,3 (s); 31,0 (t); 22,9 (s); 16,9 (t); 16,4 (t); Nebenisomer: 119,3 (s); 31,7 (t); 23,9 (s); 17,1 (t); 16,2 (t). MS²¹): 160 (1, M^+), 159 (6), 145 (28), 132 (38), 131 (71), 117 (100), 116 (33), 115 (62), 105 (43) 104 (64), 103 (33), 91 (88), 79 (43), 78 (36), 77 (48), 67 (14), 65 (26), 63 (17), 53 (20), 52 (21), 51 (21), 41 (21), 39 (27). HR-MS: 160, 12524 (M^+ , C₁₂H₁₆⁺⁻; ber. 160, 12520)¹⁷).

2.5. 6,6'-Bi(3-oxabicyclo[3.1.0]hexyliden) (5e). Mit 1,5 g (6,2 mmol) 1e, 1 Spatelspitze (ca. 0,1 mol-equiv. bzgl. 1e) CuCl₂, 22 ml abs. THF und 4,0 ml (6,51 mmol) 1,6M BuLi in Hexan. Beim Eindampfen des Et₂O-Extrakts fällt ein Teil des Produkts kristallin aus. Der Rückstand wird zweimal mit je 1,5 ml Et₂O versetzt, das Gemisch umgeschwenkt und Et₂O mit einer *Pasteur*-Pipette abgesaugt. Der kristalline Rückstand wird i. HV. getrocknet: 116,2 mg (26,1 %) farblose Kristalle eines Reinisomers 5e. GC: t_R 21,8; Reinheit 99,0%. Die vereinigten Et₂O-Lsg. werden eingedampft. 266,8 mg teilkristallines Produkt, das laut GC die beiden Diastereoisomeren 5e im Verhältnis 2,0:1,0 enthält. GC: t_R 20,7 bzw. 21,8; Reinheit 66,7%. Gesamtausbeute an 5e 66,7% ²⁰). IR²¹) (KBr): 2964m, 2942m, 2878m-s, 2865m-s, 1466m, 1334m-s, 1263m-s, 1199m-s, 1099m, 1068s, 1016s, 992m, 921m-s, 898s, 796m-s, 720s. ¹H-NMR (300 MHz, CDCl₃, Reinisomer): 4,07 (d, 4 H); 3,83 (br. d, 4 H); 2,25 (br. s, 4 H). ¹³C-NMR (75 MHz, CDCl₃, Reinisomer): 116,8 (s); 71,1 (t); 21,5 (d). MS²¹): 164 (0,1, M^+), 135 (18),

²⁰) GC-Ausbeute = Gewicht der Fraktion × GC-Reinheit. Zur Bestimmung der Gesamtausbeute werden die GC-Ausbeuten der einzelnen Fraktionen addiert.

²¹) IR: Nur charakteristische Banden. MS: Nur M⁺-Basispeak und Schlüsselbruchstücke.

²²) Der M^+ -Peak ist nicht sichtbar.

117 (24), 115 (10), 107 (39), 105 (27), 103 (13), 93 (29), 92 (24), 91 (100), 79 (63), 77 (51), 65 (25), 55 (11), 53 (10), 51 (9), 41 (13), 39 (12). HR-MS: 164,08293 (M^+ , $C_{10}H_{12}O_2^+$; ber. 164,08373)¹⁷).

2.6. 2,2'-Bis(butoxymethyl)-1,1'-bi(cyclopropyliden) (5f). Mit 2,0 g (7,0 mmol) 1f, 1 Spatelspitze (ca. 0,1 molequiv. bzgl. 1f) CuCl₂, 25 ml abs. THF und 4,6 ml (7,35 mmol) 1,6M BuLi in Hexan. Nach dem Einengen werden flüchtige Anteile während 15 min bei RT. i. HV. abgetrennt. FC ergibt eine Hauptfraktion (klares, farbloses Öl, 605,6 mg; R_t (Hexan) 0,42) die laut GC drei Diastereoisomere 5f im Verhätnis 1,6:5,3:1,0 enthält. GC: t_R 33,7, 34,5 bzw. 35,6; Reinheit 98,4%. GC-Ausbeute 75% ²⁰). IR ²¹) (Film): 3041m, 2958s, 2932s, 2860s, 1464m-s, 1413m, 1375m-s, 1338m, 1253m, 1104s, 1064m-s, 1013m, 962m. ¹H-NMR (300 MHz, CDCl₃): 3,6-3,1 (mehrere m, 8 H); 1,86 (br. m, 2 H); 1,65-1,3 (mehrere m, 10 H); 1,08 (br. m, 2 H); 0,95 (t, J = 7,3, 6 H). ¹³C-NMR (75 MHz, CDCl₃)²³): 113,9 (s); 73,5 (t); 70,3 (t); 31,9 (t); 19,4 (t); 15,8 (d); 13,9 (q); 8,8 (t). MS²¹)²²): 165 (5), 139 (7), 122 (46), 121 (31), 109 (40), 107 (37), 95 (35), 94 (29), 93 (65), 91 (40), 81 (66), 79 (58), 77 (17), 67 (13), 57 (100), 41 (45), 29 (18). HR-MS²²): 165,12785 ($[M^+ - C_5H_{11}O]^+, C_{11}H_{17}O^+$; ber. 165,12794)¹⁷).

2.7. 2,2'-Bis(phenoxymethyl)-1.1-bi(cyclopropyliden) (5g). Mit 1,5 g (4,9 mmol) 1g, 1 Spatelspitze (ca. 0,1 mol-equiv. bzgl. 1g) CuCl₂, 17 ml abs. THF und 3,22 ml (5,14 mmol) 1,6M BuLi in Hexan. FC ergibt eine Hauptfraktion (blassgelbes Öl, $R_{\rm f}$ (Hexan) 0,216), die laut GC drei Diastereoisomere 5g im Verhältnis 1,0:1,68:1,78 enthält. GC: $t_{\rm R}$ 53,80, 54,07 bzw. 54,36; Reinheit nur 62,5%. Gesamtausbeute ca. 50% 20)²⁴). ¹H-NMR (300 MHz, CDCl₃): 7,23 (m, 4 H); 6,90 (m, 6 H); 4,10 (m); 3,98 (m); 3,76 (m, total 4 H); 2,00 (m, 2 H); 1,60 (m, 2 H); 1,20 (m, 2 H). ¹³C-NMR (75 MHz, CDCl₃)²³): 158.8 (s); 129,4 (d); 120,6 (d); 114,6 (d); 114,1 (s); 70,8 (t); 15,3 (d); 9,3 (t). MS²¹)²²): 185 (1), 171 (1), 119 (8), 107 (19), 105 (49), 94 (57), 91 (42), 79 (60), 77 (100), 66 (48), 65 (57), 63 (15), 55 (13), 53 (15), 51 (39), 41 (38), 39 (64) ¹⁷).

2.8. 2,2'-Bis(4-methylphenyl)-1,1'-bi(cyclopropyliden) (5h). Mit 1,5 g (5,2 mmol) 1h, 1 Spatelspitze (ca. 0,1 mol-equiv. bzgl. 1h) CuCl₂, 18 ml abs. THF und 3,4 ml (5,46 mmol) 1,6M BuLi in Hexan. Zur Abtrennung leichtflüchtiger Verunreinigungen wird das Rohprodukt 30 min im Ölbad auf $100^{\circ}/10^{-1}$ Torr erhitzt. Nach der FC (Säulenhöhe nur 9 cm) enthält die Hauptfraktion (blassgelbes, hochviskoses Öl, 152,6 mg; $R_{\rm f}$ (Hexan) 0,12) laut GC vier Diastereoisomere 5h im Verhältnis 2,1:4,2:5,3:1,0. GC: $t_{\rm R}$ 39,7, 44,4,48, bzw. 46,3; Reinheit nur 75,8%. Gesamtausbeute $17\%^{20}$). ¹H- und ¹³C-NMR¹⁷): Zuordnungen wegen des geringen Reinheitsgrades und der zahlreichen Isomeren ungenau. MS²¹)²⁵): 260 (18, M^{+}), 259 (9), 246 (21), 245 (100), 230 (36), 229 (27), 215 (30), 168 (22), 155 (45), 153 (23), 142 (90), 141 (67), 130 (22), 129 (25), 128 (22), 118 (27), 117 (22), 116 (13), 115 (87), 114 (12), 105 (16), 91 (25), 77 (16), 65 (13), 63 (11), 51 (13), 39 (13)¹⁷).

2.9. 2,2'-Bis(4-methoxyphenyl)-1,1'-bi(cyclopropyliden) (5i). Mit 1,5 g (4,9 mmol) 1,1-Dibromo-2-(4-methoxyphenyl)cyclopropan (1i), 1 Spatelspitze (ca. 0,1 mol-equiv. bzgl. 1i) CuCl₂, 17 ml abs. THF und 3,22 ml (5,15 mmol) 1,6M BuLi in Hexan. Beim Eindampfen des Et₂O-Extrakts fallen farblose Kristalle aus. Man versetzt mit ca. 5 ml eiskaltem Hexan/Et₂O 4:1, saugt die Mutterlauge mit ausgezogener Pipette ab und trocknet bei $20^{\circ}/10^{-4}$ Torr: 221,6 mg (31%)²⁰) eines Diastereoisomers 5i. GC: $t_{\rm R}$ 53.1, Reinheit 94,6%. Schmp. 153–155°. IR²¹) (KBr): 2998m, 2973m, 2961m, 2934m, 2833m, 2360m, 2341m, 1609m, 1511s, 1459m, 1299m, 1238s, 1179m-s, 1174m-s, 1108m, 1033s, 1010m, 974m, 918m, 819s, 789m, 547m. ¹H-NMR (300 MHz, CDCl₃): 7,11 (m, 4 H); 6,83 (m, 4 H); 3,78 (s, 6 H); 2,77 (m, 2 H); 1,84 (m, 2 H); 1,27 (m, 2 H). ¹³C-NMR (75 MHz, CDCl₃): 134,0 (s); 127,8 (d); 116,3 (s); 113,8 (d); 55,3 (q); 19,6 (d); 14,5 (t). MS²¹): 292 (8, M^+), 291 (5), 277 (10), 261 (29), 229 (10), 184 (28), 171 (29), 158 (33), 146 (29), 145 (12), 143 (16), 134 (27), 131 (16), 128 (15), 121 (100), 115 (39), 103 (23), 91 (18), 77 (23). HR-MS 292,14645 (M^{++} , C₂₀H₂₀O₂⁺; ber. 292,14633)¹⁷).

2.10. Versuch zur Synthese von 1,1'-Bi(spiro[2.2]pentyliden) (5d): 1,1'-(Ethan-1,2-diyl)bis(2-bromocyclobuten) (9). Mit 1,0 g (4,4 mmol) 1d, 1 Spatelspitze (ca. 0,1 mol-equiv. bzgl. 1d) CuCl₂, 15 ml abs. Et₂O und 2,9 ml (4,62 mmol) 1,6M BuLi in Hexan. Nach der FC wird sehr vorsichtig bei 20°/ca. 600 Torr eingedampft: 50 mg (7,7%). 9. Blassgelbe Kristalle. Schmp. ca. 25°. IR²¹) (Film): 2931s, 2841m-s, 1654m-s, 1430m-s, 1256m-s, 1208m-s, 1080m-s, 1055m-s, 1020m, 938m-s, 870m-s. ¹H-NMR (300 MHz, CDCl₃): 2.70 (m, 4 H); 2,50 (m, 4 H); 2,21 (s, 4 H). ¹³C-NMR (300 MHz, CDCl₃): 147,5 (s); 108,7 (s); 35,0 (t); 30,4 (t); 25,4 (t). MS²¹): 294 (27, M^{++}), 292 (56, M^{++}), 290 (29, M^{++}), 213 (81), 211 (83), 148 (34), 147 (97), 146 (43), 145 (98), 132 (82), 131 (88), 117 (62), 116 (20), 115 (20), 105 (18), 104 (21), 91 (55), 80 (31), 79 (22), 77 (25), 67 (24), 66 (72), 65 (100), 51 (21), 39 (39). HR-MS: 289,93002 (M^{++} , C₁₀H₁₂Br₂+⁺; ber. 289,93057)¹⁷).

3. Einfluss der Reaktionsparameter auf die Bildung der Bi(cyclopropylidene) 5. 3.1. 'Thermodynamisch kontrollierte' Reaktionsführung⁹) (Tab. 2). Im N₂-Strom wird ein Zweihalskolben mit dem Bunsenbrenner ausgeheizt, im

²³) Mittlere Absorptionslage der sehr ähnlich absorbierenden Signale mehrerer Diastereoisomerer.

²⁴) Die Reaktion $1g \rightarrow 5g$ ist schlecht reproduzierbar.

²⁵) Daten des GC/MS wegen rel. geringer Reinheit des Diastereoisomerengemischs 5g.

N₂-Strom abgekühlt und mit abs. THF²⁶) und 1,1-Dibromocyclopropan 1²⁶) beschickt. Man kühlt unter Rühren auf -95° , gibt mittels Spritze durch ein Septum tropfenweise BuLi zu (1,05 mol-equiv. bzgl. 1)²⁶) und rührt weitere 15 min bei -95° . Sodann wird 1 Spatelspitze (*ca.* 0,1 mol-equiv. bzgl. 1)²⁶) CuCl₂ zugegeben, 60 min bei -95° gerührt und zum Reaktionsabbruch 5M HOAc in abs. THF (2 mol-equiv. bzgl. 1) zugetropft. Nach weiteren 15 min Rühren bei -95° wird auf RT. erwärmt. Das Gemisch wird mit *ca.* 80 ml Et₂O und 30 ml H₂O (enthaltend 3 ml ges. Na₂CO₃-Lsg.) versetzt und die org. Phase noch mit 2 × 30 ml H₂O gewaschen, getrocknet (MgSO₄) und bei *ca.* 50°/200 Torr eingedampft. Der resultierende Rückstand wird im GC untersucht.

3.2. Kinetisch kontrollierte Reaktionsführung⁹) (Tab. 2). Vgl. 2.1 (bis GC-Untersuchung). In allen Ansätzen von Tab. 2 wird abs. THF als Lsgm. verwendet²⁶).

3.3. Einfluss der Reaktionsführung auf das Diastereoisomerenverhältnis der 'Carben-Dimeren' 5 (Tab. 3). Vgl. 2.1 und 3.1²⁶).

3.4. Einfluss des Lösungsmittels (Tab. 4). Vgl. 2.1 ('Kinetische Kontrolle'⁹)). Es wurde je 1 Ansatz in abs. THF und in abs. Et₂O durchgeführt²⁶).

3.5. Einfluss des Katalysators (Tab. 5). Vgl. 2.1²⁶).

3.6. Leerversuch (Tab. 5). Wie in 3.1 beschrieben, aber ohne CuCl₂-Zugabe (Reaktionszeit nach BuLi-Zugabe bis Reaktionsabbruch 50 min).

4. Zu den mechanistischen Untersuchungen. 4.1. Reinigung von 5c. Das nach 2.4 synthetisierte 5c (GC-Reinheit 92,5%) wird nochmals mittels FC (Kieselgel, Hexan) gereinigt, wobei ein je 5c-haltiger Vor- und Nachlauf der Hauptfraktion (R_c 0,57) abgetrennt werden. GC-Reinheit nach dem Eindampfen bei ca. 50°/200 Torr; 99%.

4.2. Protonierung von 2c zu 1-Bromospiro[2.3]hexan (10c). Nach 3.6, mit 1,0 g (4,2 mmol) 1c, 15 ml abs. THF und 2,74 ml (4,41 mmol) 1,6M BuLi in Hexan. Nach dem Zutropfen von BuLi wird nur 10 min bei -95° gerührt. Dann werden bei -95° 4,17 ml (20,8 mmol) 5M HOAc in THF zugetropft. Nach 3 min Rühren bei -95° wird auf RT. erwärmt und das Gemisch mit ca. 80 ml Et₂O und 30 ml H₂O (enthaltend 3 ml ges. Na₂CO₃-Lsg.) versetzt. Die org. Phase wird noch mit 2 × 30 ml H₂O gewaschen, getrocknet (MgSO₄) und vorsichtig bei RT./200 Torr eingedampft. FC (Kieselgel, Ø 2 cm, Höhe 30 cm, Hexan) das Rohprodukt (GC-Reinheit ca. 92,5%) ergibt eine Hauptfraktion (536 mg; GC-Reinheit 97,4%, Ausbeute 80%)²⁰), von der in einer weiteren FC ein je 10c-haltiger Vor- und Nachlauf abgetrennt werden: 10c mit einer GC-Reinheit von 99%.

4.3. Eichkurven zur quantitativen GC-Bestimmung von 5c und 10c [2].

4.4. Reaktionskinetik $2c \rightarrow 5c$: Zur Apparatur, vgl. Fig. 2. Das Reaktionsgefäss (Magnetrührer; Fig. 2, rechts) wird im N₂-Strom mit dem Bunsenbrenner gut ausgeheizt und auf RT. abgekühlt. Parallel dazu werden fünf Abbruchgefässe (Magnetrührer, Dreiweghahn; Fig. 2, links) bereitgestellt und je mit der zum Reaktionsabbruch benötigten 5M HOAc in abs. THF (zweifacher Überschuss) beschickt. Im Reaktionsgefäss werden 4,0 g (16,7 mmol) 1c bei RT. in 58 ml abs. THF gelöst und unter Rühren auf -95° gekühlt. Man tropft bei -95° mittels Spritze 10,94 ml (17,5 mmol) 1.6M BuLi in Hexan zu und rührt 10 min bei -95° ($\rightarrow 2c$, quant.). Die Reaktion $2c \rightarrow 5c$ wird durch Zugabe einer exakt eingewogenen Menge abs. CuBr₂²⁷) gestartet. In geeigneten Zeitintervallen nach 3, 6, 12, 24 und 48 min (vgl. Fig. 1) werden das Reaktionsgefäss (Fig. 2, rechts) und das Abbruchgefäss (Fig. 2, links) mit einer Metallkapillare verbunden²⁸), und durch Öffnen des Vakuums wird je ein aliquoter Teil der Reaktionslg. ins Abbruchgefäss transferiert. Nach Beendigung der Kinetik werden alls fünf 'Abbruchlösungen' einzeln nach 2.1 durch Ausschütteln mit Et₂O/H₂O und Eindampfen aufgearbeitet. Durch quant. GC-Analyse des Gehalts an 5c und 10c anhand der Eichgeraden lässt sich der kinetische Verlauf der Reaktion $2c \rightarrow 5c$ bestimmen (Fig. 1)²⁹)³⁰).

²⁶) Mengenangaben, vgl. 2.2-2.10.

²⁷) Trocknung von CuBr₂: H₂O-freies CuBr₂ (*Fluka*) wird bei 10⁻³ Torr in einem eingewogenen Glührohr oder Fläschchen 1 h auf ca. 80° erhitzt. Nach dem Abkühlen wird gewogen, das CuBr₂ durch ein kurzzeitig geöffnetes Septum ins Reaktionsgefäss gegeben und die Tara des Glührohrs bzw. Fläschchens bestimmt.

²⁸) Die Metallkapillare wird vor Gebrauch im Trockenschrank getrocknet und anschließend im N₂- oder Ar-Strom auf RT. abgekühlt.

²⁹) Exper. Details, vgl. [2].

³⁰) Das Verfahren (Fig. 2) wird durch die zu kleine Zahl an Messpunkten beeinträchtigt (Fig. 1), was eine saubere kinetische Auswertung verunmöglicht. Folgende Modifikation der Probeentnahme könnte zu wesentlich mehr Datenpunkten führen: Die Probeentnahme aus dem Reaktionsgefäss erfolgt mittels 1-ml-Glasspritzen, welche durch Durchblasen von verdampfendem N₂ auf ca. - 80° abgekühlt und vor der Probeentnahme zur Hälfte mit tiefgekühlter HOAc-Lsg. in abs. THF gefüllt werden. Nach gründlicher Reinigung der Nadel entnimmt man durch das Septum des Reaktionsgefässes ca. 0,5 ml Reaktionslsg., wobei die Reaktion beim Aufsaugen abgebrochen wird!

Fig. 2. Apparatur zur kinetischen Verfolgung der Reaktion $2c \rightarrow 5c$

LITERATURVERZEICHNIS

- [1] C. Läng, M. Mühlebach, M. Neuenschwander, Helv. Chim. Acta 1997, 80, 2124.
- [2] M. Borer, Dissertation, Universität Bern, 1996.
- [3] G. Boche, H. M. Walborsky, 'Cyclopropane Derived Reactive Intermediates', Updates from 'The Chemistry of Functional Groups', Eds. S. Patai und Z. Rapoport, John Wiley, Chichester, 1990.
- [4] G. Köbrich, Angew. Chem. 1972, 84, 557; ibid., Int. Ed. Engl. 1972, 11, 473.
- [5] K. Kitatani, T. Hijama, H. Nozaki, J. Am. Chem. Soc. 1975, 97, 949; K. Kitatani, T. Hijama, H. Nozaki, Bull. Chem. Soc. Jpn. 1977, 50, 3288; T. Hijama, A. Kanakura, H. Yamamoto, H. Nozaki, Tetrahedron Lett. 1978, 33, 3047.
- [6] D. Seyferth, R. L. Lambert, J. Organomet. Chem. 1973, 55, C53; D. Seyferth, R. L. Lambert, M. Massol, ibid. 1975, 88, 255.
- [7] A. Schmidt, G. Köbrich, Tetrahedron Lett. 1974, 2561; M. Braun, R. Dammann, D. Seebach, Chem. Ber. 1975, 108, 2368.
- [8] W. Kirmse, 'Carbene Chemistry', Academic Press, New York, 1971; M. Jones, R. A. Moss, 'Reactive Intermediates', Wiley, New York, 1981, Vol. 2, p. 113; P. D. Landor, in 'The Chemistry of Allenes', Ed. S. R. Landor, Academic Press, New York, 1982, Vol. 1.
- [9] L. Skattebøl, Tetrahedron Lett. 1961, 167; Acta Chem. Scand. 1963, 17, 1683.
- [10] E. M. Marquis, P. D. Gardner, J. Chem. Soc., Chem. Commun. 1966, 726.
- [11] W. R. Moore, R. D. Bach, J. Am. Chem. Soc. 1972, 94, 3148.
- [12] G. Pilidis, Collect. Czech. Chem. Commun. 1986, 51, 2151.
- [13] K. G. Taylor, J. Chaney, J. C. Deck, J. Am. Chem. Soc. 1976, 98, 4163.
- [14] R. Neidlein, V. Poignée, W. Kramer, C. Glück, Angew. Chem. 1986, 98, 735.
- [15] J. Arct, L. Skattebøl, Acta Chem. Scand. 1982, B36, 593.
- [16] L. Skattebøl, Y. Stenstrøm, M.-B. Stjerna, Acta Chem. Scand., Sect. B 2988, 42, 475.
- [17] A. Escher, W. Rutsch, M. Neuenschwander, Helv. Chim. Acta 1986, 69, 644.
- [18] M. Borer, T. Loosli, M. Neuenschwander, Chimia 1991, 45, 382.
- [19] T. Loosli, M. Borer, I. Kulakowska, A. Minger, M. Neuenschwander, Helv. Chim. Acta 1995, 78, 1144.
- [20] M. Borer, T. Loosli, A. Minger, M. Neuenschwander, Helv. Chim. Acta 1995, 78, 1311.
- [21] A. Schmidt, G. Köbrich, R. W. Hoffmann, Chem. Ber. 1991, 124, 1253.
- [22] D. E. Dorman, M. Jautelat, J. D. Roberts, J. Org. Chem. 1971, 36, 2757.
- [23] E. Pretsch, T. Clerc, J. Seibl, W. Simon, 'Tabellen zur Strukturaufklärung organischer Verbindungen', Springer, 1986, C90.
- [24] A. Minger, Diplomarbeit, Universität Bern, 1992.

2500

- [25] M. Borer, Diplomarbeit, Universität Bern, 1991.
- [26] D. Seebach, R. Hässig, J. Gabriel, Helv. Chim. Acta 1983, 66, 308.
- [27] D. Seebach, H. Siegel, K. Müllen, K. Hiltbrunner, Angew. Chem. 1979, 91, 844; D. Seebach, H. Siegel, J. Gabriel, R. Hässig, Helv. Chim. Acta 1980, 63, 2046.
- [28] W. von E. Doering, A. K. Hoffmann, J. Am. Chem. Soc. 1954, 76, 6162; W. von E. Doering, W. A. Henderson, ibid. 1958, 80, 5254.
- [29] M. Makosza, A. Kacprowicz, M. Fedorynsky, *Tetrahedron Lett.* 1975, 2119; M. Makosza, in 'Modern Synthetic Methods 1976', Ed. R. Scheffold, Schweiz. Chemiker-Verband, 1976.